Chem. Ber. 102, 3139-3147 (1969)

Gerhard W. Fischer und Karlheinz Lohs

Cytotoxische Verbindungen, V¹⁾

Bis-[2-chlor-äthyl]-[2-acyl-vinyl]-amine

Aus dem Institut für Biophysik der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Buch

(Eingegangen am 17. März 1969)

Aus Bis-[2-chlor-äthyl]-amin (HN-Lost) und Derivaten aromatischer β -Hydroxy-vinylketone resultieren Bis-[2-chlor-äthyl]-[2-acyl-vinyl]-amine 6. Das Reaktionsverhalten dieser vinylogen Stickstofflost-Amide wird untersucht und der Einfluß von Substituenten auf ihre Stabilität im schwach sauren Medium diskutiert.

Der therapeutische Einsatz cytostatisch aktiver β -Amino-alkylantien vom Stickstofflost-Typ wird durch ihre wenig spezifische Wirkung und hohe Allgemeintoxizität begrenzt. Zahlreichen Bemühungen um krebsselektivere Stickstofflost-Derivate liegt der Gedanke zugrunde, Bis-[2-chlor-äthyl]-amin (1, HN-Lost) durch Verknüpfung mit geeigneten Trägerstrukturen zu in vitro weitgehend inaktiven "Transportformen"²⁾ abzuwandeln, die erst im lebenden Organismus, bevorzugt im Milieu der Krebszelle, zur aktiven Form gespalten werden können³⁾.

Die notwendige Desaktivierung der Lostgruppe gelingt durch verschiedenartigste N-Acylierung⁴, doch sind mit Ausnahme weniger Verbindungen (z. B. einiger Lost-N-phosphamidester⁵) die resultierenden N-Lost-Amide einer in-vivo-Reaktivierung nicht in geeigneter Weise zugänglich. Neben derart zu großer kann auch mangelnde Stabilität Ursache der biologischen Unwirksamkeit sein. So erleiden insbesondere viele N-Lost-Carbonsäureamide **2** in wäßrigem Medium eine über intramolekulare O-Alkylierung verlaufende Umlagerung zu inaktiven [2-Chlor-äthyl]-[2-acyloxy-äthyl]-aminen 3^{4c} . Auch die cytostatische Inaktivität von N-Lost-Amiden der Thiocarbamidsäure ließ sich auf intramolekulare Sekundärreaktionen zurückführen⁶).

Im Rahmen unserer Untersuchungen über cytotoxische Verbindungen interessierte in diesem Zusammenhang die Frage, ob durch Verknüpfung von 1 mit einer vinylogen

¹⁾ IV. Mitteil.: H. Sachert und G. W. Fischer, Studia Biophys. 13, 97 (1969).

²⁾ H. Druckrey, Dtsch. med. Wschr. 77, 1495, 1534 (1952).

³⁾ Zusammenfassende Darstellungen: W. C. J. Ross, Biological Alkylating Agents, Butterworths, London 1962; H. Arnold, Fortschr. chem. Forsch. 7, 196 (1966).

 ⁴⁾ ^{4a)} E. R. H. Jones und W. Wilson, J. chem. Soc. [London] **1949**, 547; H. Brintzinger, K. Pfannstiel und H. Koddebusch, Chem. Ber. **82**, 389 (1949); K. A. Jensen und B. Alhede, Acta chem. scand. **6**, 201 (1952); ^{4b)} R. Preussmann, Arzneimittel-Forsch. **8**, 9 (1958); **12**, 1119 (1962); ^{4c)} W. C. J. Ross und J. G. Wilson, J. chem. Soc. [London] **1959**, 3616; ^{4d)} Y. Kuwada, Chem. pharmac. Bull. [Tokyo] **8**, 77 (1960); F. D. Popp und H. Swarz, J. org. Chemistry **26**, 4764 (1961); A. J. Berlin und I. S. Lewi, J. allg. Chem. (russ.) **33**, 860 (1963), C. A. **59**, 7516 (1963); H. Dorn, H. Welfle und R. Liebig, Chem. Ber. **99**, 812 (1966).

⁵⁾ H. Arnold, F. Bourseaux und N. Brock, Arzneimittel-Forsch. 11, 143 (1961).

⁶⁾ H. Dorn und M. Schütt, Chem. Ber. 97, 3246 (1964).

Acylgruppierung hinreichend stabile Verbindungen als mögliche Transportformen zu erhalten sind. Dem Vinylogieprinzip⁷ zufolge sollten derartige Lostderivate ebenfalls weitgehend desaktivierte Wirkgruppen besitzen, ohne jedoch Folgereaktionen analog $2 \rightarrow 3$ zu unterliegen.

Zur Überführung sek. Amine in β -Amino-vinylketone empfehlen sich Umsetzungen mit β -Hydroxy-vinylketonen⁸, β -Chlor-vinylketonen⁹ oder Äthinylketonen¹⁰. Wie wir bereits kurz mitteilten¹¹, erhält man Bis-[2-chlor-äthyl]-[2-acyl-vinyl]-amine **6** vorteilhaft aus 1-Hydrochlorid und β -Hydroxy-vinylketon-Natriumsalzen **4**:

Bei Verwendung von Äthanol als Reaktionsmedium lassen sich 6a-v in 47 bis 98 proz. Ausbeute als farblose bis blaßgelbe kristalline Verbindungen gewinnen, denen *trans*-Konfiguration zukommt. Der sterische Verlauf erhellt sowohl aus spektroskopischen Befunden (IR: CH-Waggingschwingung bei 960-990/cm; NMR: $J_{\rm HC=CH}$ 12.5-13 Hz) als auch aus der Tatsache, daß *trans*- β -Chlor-vinylketone **5** mit 1 zu identischen Verbindungen führen. Der *trans*-Verlauf des letztgenannten Reaktionstyps wurde bereits in anderem Zusammenhang sichergestellt¹².

⁷⁾ R. C. Fuson, Chem. Reviews 16, 1 (1935).

⁸⁾ K. Auwers und W. Susemihl, Ber. dtsch. chem. Ges. **63**, 1072 (1930); E. Benary, ebenda **63**, 1573 (1930).

⁹⁾ N. K. Kochetkov, Nachr. Akad. Wiss. UdSSR., Abt. chem. Wiss. 1953, 991, C. A. 49, 2308 (1955); N. K. Kochetkov, M. Ivanova und A. N. Nesmejanov, ebenda 1956, 676, C. A. 51, 1830 (1957); G. Opitz und M. Kleemann, Liebigs Ann. Chem. 665, 114 (1963).

K. Bowden, E. A. Braude, E. R. H. Jones und B. C. Weedon, J. chem. Soc. [London] 1946, 45; K. Bowden, E. A. Braude und E. R. H. Jones, ebenda 1946, 945.

¹¹⁾ G. W. Fischer und Kh. Lohs, Z. Chem. 8, 144 (1968).

¹²⁾ W. R. Benson und A. E. Pohland, J. org. Chemistry 29, 385 (1964).

Analog 6 resultieren aus entsprechenden Hydroxymethylenverbindungen des Indanons-(1) und Benzsuberons-(1) die N-Lost-Derivate 7a und 7b.

$$\begin{array}{c} O \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\$$

IR- und UV-spektroskopische Angaben über die dargestellten Verbindungen 6 finden sich in der Tab. auf S. 3146.

Reaktionsverhalten vinyloger Bis-[2-chlor-äthyl]-amide

Wie die geringe Chlorid-Abspaltbarkeit¹³⁾ (unter den Standardbedingungen nach $Ross^{14)} < 1\%$) zeigt, besitzen N-acylvinylierte Stickstoffloste 6 stark desaktivierte Wirkgruppen. Da mithin ein cytostatischer Effekt nur durch Abspaltung von HN-Lost 1 erwartet werden kann, untersuchten wir das hydrolytische Verhalten von 6 bei verschiedenen pH-Werten.

Die Spaltung der N-C-Bindung gemäß

 $6 + H_2O \longrightarrow 1 + HO - CH = CH - COR$ 8

läßt sich auf Grund hinreichend unterschiedlicher UV-Absorption von 6 und der Hydroxyvinylketone 8 spektrophotometrisch verfolgen. Man findet, daß Verbindungen vom Typ 6 im neutralen und schwach basischen Bereich (pH 7–9) erwartungsgemäß weitgehend stabil sind, im sauren Medium dagegen in Abhängigkeit vom pH-Wert und vom Substituenteneinfluß mehr oder weniger schnell hydrolysiert werden. Abbild. 1 zeigt ein charakteristisches Hydrolyseprofil der monosubstituierten Derivate 6a-i für pH 4.9, ausgedrückt in prozentualem Extinktionsverlust der langwelligen UV-Bande. Abbild. 2 gibt bei gleichen Bedingungen das Hydrolyseverhalten der Verbindungen 6j-v wieder. Die im dargestellten Zeitraum (10 Stdn.) nahezu linear verlaufende Extinktionsabnahme läßt bei weiterem Fortschreiten der Hydrolyse einen logarithmischen Abfall erkennen (entsprechend einer Reaktion erster Ordnung pseudomonomolekularen Charakters).

Wie aus Abbild. 1 hervorgeht, erfahren die Hydrolysegeschwindigkeiten von 6a—i eine Abstufung nach den *Hammett*schen σ -Werten¹⁵⁾ im Sinne einer Reaktionsbeschleunigung durch elektronenspendende und einer Verzögerung durch elektronenanziehende Substituenten. Dieser Befund kommt Vorstellungen über den Hydrolysemechanismus entgegen. Als ambifunktionelle nucleophile Systeme bieten β -Aminovinylketone gemäß Mesomerie **9A**—C einer Protonenkatalyse drei Angriffsmöglichkeiten: das Stickstoff-, Sauerstoff- und α -Kohlenstoffatom.

 ¹³⁾ Über Zusammenhänge zwischen Chlorid-Abspaltbarkeit und cytostatischer Wirkung von N-Lost-Derivaten vgl. l.c.^{4b)} sowie *R. Preussmann*, Arzneimittel-Forsch. 8, 638 (1958);
 12, 260 (1962).

¹⁴⁾ W. C. J. Ross, J. chem. Soc. [London] 1949, 183.

¹⁵⁾ L. P. Hammett, Physical Organic Chemistry, McGraw Hill Book Co., Inc., New York 1940; H. H. Jaffé, Chem. Reviews 53, 191 (1953).

Abbild. 1. Hydrolyse der N-Lost-Derivate 6a-i bei pH 4.9 (4.0 $\cdot 10^{-5}$ m, Walpole-Puffer/ Äthanol 1 :1, $T = 20^{\circ}$).

 E_0 = Anfangsextinktion, E_t = Extinktion zur Zeit t; $\lambda_{max}^{E_0}$ (m μ): 6a (342), 6b (343), 6c (342), 6d (346), 6e (347), 6f (348), 6g (344), 6h (371), 6i (347)

Abbild. 2. Hydrolyse der *N*-Lost-Derivate 6j - v bei pH 4.9 (Bedingungen s. Abbild. 1). $\lambda_{\text{max}}^{E_0}(m\mu): 6j(350), 6k(304), 6l(304), 6m(342), 6n(349), 6o(349), 6p(304), 6q(301), 6r(301), 6s(354), 6t(306), 6u(347), 6v(354)$

Eine Reihe experimenteller Untersuchungen bestätigt theoretische Überlegungen¹⁶⁾, nach denen auf Grund der zunehmenden Nucleophilie C < N < O sowie infolge geringsten Mesomerieverlustes elektrophile Agentien bevorzugt am Sauerstoff angreifen sollten. So konnte bei verschiedenartigen Verbindungen vom Typ 9 IR-¹⁷⁾, NMR-¹⁸⁾ oder UV-spektroskopisch¹⁹⁾ eine *O*-Protonierung nachgewiesen werden. In Übereinstimmung mit HMO-theoretischen Berechnungen²⁰⁾ ergab die NMR-spektroskopisch verfolgte Kinetik der Protonierung von β -Dimethylamino-acrolein (9, R = CH₃, R' = H), daß die *O*-protonierte Form sich nicht nur schneller bildet, sondern auch stabiler als die *N*- bzw. *C*-protonierte Form ist²¹⁾.

Im Falle der N-Lost-Derivate 6 erlauben IR- und NMR-Spektren keine eindeutigen Aussagen über die Protonierungsposition²²⁾. Die aus 6 mittels starken Mineralsäuren z. T. kristallin isolierbaren Salze geben sich jedoch UV-spektroskopisch als *O*-protonierte Verbindungen 11 zu erkennen. Wie Abbild. 3 am Beispiel 6e bzw. 11a

Abbild. 3. UV-Spektren der Verbindungen 6e, 10 und 11a

- ¹⁶⁾ R. Gompper, Angew. Chem. 76, 412 (1964); Angew. Chem. internat. Edit. 3, 560 (1964).
 ¹⁷⁾ N. J. Leonard und J. A. Adamcik, J. Amer. chem. Soc. 81, 595 (1959).
- ¹⁸⁾ A. R. Katritzky und R. A. Y. Jones, Chem. and Ind. 1961, 722; A. R. Katritzky und R. E. Reavill, J. chem. Soc. [London] 1963, 753.
- ¹⁹⁾ G. H. Alt und A. J. Speziale, J. org. Chemistry 30, 1407 (1965).
- ²⁰⁾ H. E. A. Kramer, Liebigs Ann. Chem. 696, 28 (1966).
- ²¹⁾ H. E. A. Kramer, Liebigs Ann. Chem. 696, 15 (1966).
- ²²⁾ In Verbindungen vom Typ 9 (R = CH₃, R' = C₆H₅) erfolgt die Rotation um die C^{β}-N-Bindung bereits so leicht, daß bei Raumtemp. nur ein einziges NMR-Signal für die H-Atome der Dialkylaminogruppe auftritt und daher nicht ermittelt werden kann, welches Salz bevorzugt entsteht²¹). Über Schwierigkeiten der IR-spektroskopischen Strukturzuordnung vgl. l.c.¹⁷).

 $(R = 4-Br-C_6H_4, X = ClO_4)$ zeigt²³⁾, bleibt bei der Salzbildung (z. B. auch beim Lösen von **6e** in 70 proz. Perchlorsäure) die langwellige UV-Absorptionsbande nahezu unverändert erhalten. Damit ist eine *N*- bzw. *C*-Protonierung ausgeschlossen, die das konjugierte System verkürzen bzw. aufheben würde. Als Beweis hierfür steht die wesentlich kürzerwellige Hauptbande der auf definiertem Wege²⁴⁾ erhaltenen quartären *N*-Methyl-Verbindung **10**, die als Modell eines *N*-protonierten Salzes gelten darf (vgl. l. c. ¹⁹).

Die protonenkatalysierte Hydrolyse der vinylogen N-Lost-Amide läßt sich demnach über eine konjugierte Säure der Struktur 11 mit anschließender Wasseranlagerung am β -C-Atom zu 12 formulieren:

Da elektronenspendende (bzw. elektronenanziehende) Substituenten die Elektronendichte am Carbonylsauerstoff erhöhen (bzw. erniedrigen), findet die Abstufung der Hydrolysegeschwindigkeiten von 6a - i (s. Abbild. 1) eine plausible Erklärung.

Präparative Bedeutung kommt der Hydrolyse vinyloger Carbonamide bei der α -Acylierung von Ketonen via Enamine zu^{25,26}: Die sich primär aus Enamin und Säurechlorid bildenden Acyl-enamine 13 werden durch Mineralsäure unter Abspaltung sek. Amins zu 1.3-Diketonen 14 zerlegt, wobei eine 11 analoge konjugierte Säure durchlaufen werden dürfte. Hierfür spricht insbesondere die Tatsache, daß bei Anwesenheit überschüssigen Säurechlorids Enolester vom Typ 16 (z. B. R', R'' = $-[CH_2]_n$, n = 3, 4; R''' = C_2H_5) entstehen, deren Bildung durch *O*-Acylierung von 13 zu 15 und nachfolgende Hydrolyse erklärt wird^{26a,26c)}.

$$R_{2}N-CR'=CHR'' + CICOR'''$$

$$\downarrow - HC1$$

$$R_{2}N-CR'=CR''-COR''' \xrightarrow{H^{\oplus}}_{+H_{2}O} R_{2}NH + O=CR'-CHR''-COR'''$$

$$13 \qquad \qquad 14$$

$$\downarrow + CICOR'''$$

$$R_{2}^{\oplus}R_{2}N=CR'-CR''=CR'''-O-COR''']C1^{\ominus} \xrightarrow{H_{2}O} R_{2}NH + O=CR'-CR''=CR'''-O-COR'''$$

$$15 \qquad \qquad 16$$

²⁴⁾ G. W. Fischer und Kh. Lohs, Z. Chem. 8, 416 (1968).

²⁵⁾ G. Stork, R. Terrell und J. Szmuszkovicz, J. Amer. chem. Soc. 76, 2029 (1954); G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkovicz und R. Terrell, ebenda 85, 207 (1963).

 ²⁶¹ 26a) S. Hünig, E. Benzig und E. Lücke, Chem. Ber. 90, 2833 (1957); ^{26b)} S. Hünig, E. Lücke und E. Benzig, ebenda 91, 129 (1958); S. Hünig und E. Lücke, ebenda 92, 652 (1959); ^{26c)} S. Hünig und W. Lendle, ebenda 93, 909 (1960); ^{26d)} S. Hünig und W. Lendle, ebenda 93, 913 (1960); S. Hünig und W. Eckardt, ebenda 95, 2493 (1962); S. Hünig und W. Salzwedel, ebenda 99, 823 (1966).

Abbild. 2 verdeutlicht die durch o-ständige Methylgruppen bedingte sterische Verzögerung: Am langsamsten reagieren 6q und 6r mit zwei o-ständigen Methylgruppen, gefolgt von 6k, 6l und 6p mit je einer o-Methylgruppe, während das sterisch nicht gehinderte 3.4-Dimethyl-Derivat 6m um das Mehrfache schneller reagiert.

Die saure Hydrolyse substituierter Benzamide ist in ähnlicher Weise von sterischen Faktoren abhängig, die polaren Substituenteneffekte sind dagegen relativ klein²⁷⁾. – Die Stabilität von mit 6 vergleichbaren *N*-Lost-Derivaten (Addukte von 1 an substituierte Propiolsäureester) wurde unlängst von *Papanastassiou* und Mitarbb.²⁸⁾ untersucht.

Beschreibung der Versuche

Die Schmpp. wurden auf dem Mikroheiztisch nach Boetius bestimmt. IR-Spektren wurden in KBr mit dem Zeiss-Spektrometer UR 10, UV-Spektren mit dem Spektrophotometer Unicam SP 800 aufgenommen.

Allgemeine Vorschrift zur Darstellung von Bis-[2-chlor-äthyl]-[2-acyl-vinyl]-aminen 6

a) Aus Bis-[2-chlor-äthyl]-amin-hydrochlorid (1·HCl) und β -Hydroxy-vinylketon-Natriumsalzen 4: 8.93 g (0.05 Mol) 1·HCl werden mit 0.05 Mol 4²⁹⁾ in 50 ccm Äthanol 10 Stdn. bei Raumtemp. geschüttelt. Ein Teil der Verbindungen scheidet sich bereits hierbei kristallin ab. In jedem Falle wird dem Reaktionsgemisch Wasser zugesetzt, bis keine Ausfällung bzw. Trübung mehr erfolgt. Zunächst ölig anfallende Reaktionsprodukte werden in Äther aufgenommen. Die ätherische Lösung wird mehrmals mit Wasser gewaschen, getrocknet und eingedampft. Nach Entfernen von Lösungsmittelspuren i. Vak. kristallisieren die verbleibenden Öle beim Anreiben. Zur Reinigung wird aus dem angegebenen Lösungsmittel umkristallisiert (Tab. S. 3146).

b) Aus $1 \cdot HCl$ und trans- β -Chlor-vinylketonen 5: Zu 8.93 g (0.05 Mol) $1 \cdot HCl$ und 0.05 Mol β -Chlor-vinylketon 5³⁰ in 30 ccm Äthanol werden unter Rühren und Eiskühlung 3.99 g (0.1 Mol) NaOH in 10 ccm Wasser langsam zugetropft. Die Abscheidung der Reaktionsprodukte und weitere Aufarbeitung erfolgt analog a).

2-[Bis-(2-chlor-äthyl)-aminomethylen]-indanon-(1) (7a): Aus dem Natriumsalz des 2-Hydroxymethylen-indanons-(1)³¹⁾ und 1 · HCl analog 6. Ausb. 77%. Farblose Nadeln (aus Äthanol); Schmp. 215° (Zers.).

IR: vCO bei 1675/cm.

UV (in Äthanol): λ_{max} (log ε) = 350 (4.40), 297 (3.48), 254 (3.92), 210 (4.01) m μ .

 $C_{14}H_{15}Cl_2NO$ (284.2) Ber. C 59.17 H 5.32 Gef. C 59.24 H 5.31

2-[Bis-(2-chlor-äthyl)-aminomethylen]-benzsuberon-(1) (7b): Analog 7a aus dem Natriumsalz des 2-Hydroxymethylen-benzsuberons-(1). Ausb. 45%. Farblose Kristalle (aus Äthanol); Schmp. 98°.

IR: vCO bei 1650/cm.

UV (in Äthanol): λ_{max} (log ε) = 345 (4.20), 250 (3.81), 210 (3.93) m μ .

C₁₆H₁₉Cl₂NO (312.3) Ber. C 61.55 H 6.13 Gef. C 61.43 H 6.08

²⁷⁾ E. E. Reid, Amer. chem. J. 21, 284 (1899); 24, 397 (1900).

²⁸⁾ Z. P. Papanastassiou, R. J. Bruni und E. White, J. med. Chem. 10, 701 (1967).

²⁹⁾ Die Natriumsalze 4 wurden in bekannter Weise durch Esterkondensation von Acetophenonen mit Ameisensäure-äthylester gewonnen; vgl. L. Claisen und L. Fischer, Ber. dtsch. chem. Ges. 21, 1135 (1888); E. Benary, ebenda 61, 2252 (1928).

³⁰⁾ A. E. Pohland und W. R. Benson, Chem. Reviews 66, 161 (1966).

³¹⁾ S. Ruhemann und S. J. Levy, J. chem. Soc. [London] 101, 2546 (1912).

Bis-[2-chlor-äthyl]-	% Ausb.	Schmp.	vCO [cm ⁻¹]	λ _{max} ^{a)} [mμ] (log ε)	Summenformel (MolGew.)		Analys C	ен
-[2-benzoyl-vinyl]- amin (6a)	85	63° Nadeln (Äther)	1645	336 (4.34) 245 (3.92) 207 (3.81)	C ₁₃ H ₁₅ Cl ₂ NO (272.2)	Ber. Gef.	57.37 57.15	5.56 5.58
-[2-p-toluoyl-vinyl]- amin (6b)	88	70° Blättchen (50 proz. Äthat	1644 nol)	337 (4.38) 260 (3.90) 214 (3.87)	C ₁₄ H ₁₇ Cl ₂ NO (286.2)	Ber. Gef.	58.75 58.50	5.99 5.92
-[2-(4-fluor-benzoyl)- vinyl]-amin (6c)	71	78° (Äther)	1646	335 (4.36) 247 (3.92) 212 (3.94)	C ₁₃ H ₁₄ Cl ₂ FNO (290.2)	Ber. Gef.	53.81 53.85	4.86 4.86
-[2-(4-chlor-benzoyl)- vinyl]-amin (6d)	90	100° Blättchen (Äthanol)	1647	340 (4.34) 253 (4.04) 213 (3.94)	C ₁₃ H ₁₄ Cl ₃ NO (306.6)	Ber. Gef.	50.92 51.14	4.60 4.83
-[2-(4-brom-benzoyl)- vinyl]-amin (6e)	98	114.5° Würfel (Äthanol)	1646	341 (4.39) 255 (4.12) 220 (3.86)	C ₁₃ H ₁₄ BrCl ₂ NO (351.1)	Ber. Gef.	44.47 44.55	4.02 4.26
-[2-(4-jod-benzoyl)- vinyl]-amin (6f)	79	127° Nadeln (Äthanol)	1647	342 (4.38) 267 (3.99) 220 (3.86)	C ₁₃ H ₁₄ Cl ₂ JNO (398.1)	Ber. Gef.	39.22 39.40	3.55 3.57
-[2-(4-methoxy-benzoyl)- vinyl]-amin (6g)	77	97° Blättchen (Benzol)	1641	337 (4.43) 281 (3.89) 223 (3.95)	C ₁₄ H ₁₇ Cl ₂ NO ₂ (302.2)	Ber. Gef.	55.64 55.41	5.67 5.48
-[2-(4-nitro-benzoyl)- vinyl]-amin (6h)	47	106° gelbe Blättchen (Äthanol)	1642	365 (4.11) 247 (4.18) 206 (3.89)	C ₁₃ H ₁₄ Cl ₂ N ₂ O ₃ (317.2)	Ber. Gef.	49.23 49.16	4.45 4.75
-[2-(3-nitro-benzoyl)- vinyl]-amin (6i)	54	91° gelbe Nadeln (Äthanol)	1652	343 (4.28) 235 (4.23)	$C_{13}H_{14}Cl_2N_2O_3$ (317.2)	Ber. Gef.	49.23 49.52	4.45 4.67
-[2-(4-phenyl-benzoyl)- vinyl]-amin (6j)	82	122.5° Nadeln (Äthanol)	1635	344 (4.36) 285 (4.13) 217 (4.06) 207 (4.17)	C ₁₉ H ₁₉ Cl ₂ NO (348.3)	Ber. Gef.	65.53 65.77	5.50 5.53
-[2-(2.4-dimethyl-benzoyl)- vinyl]-amin (6k)	82	77° (Äther)	1645	302 (4.32) 262 (3.40) 213 (3.90)	C ₁₅ H ₁₉ Cl ₂ NO (300.2)	Ber. Gef.	60.01 60.26	6.38 6.56
-[2-(2.5-dimethyl-benzoyl)- vinyl]-amin (61)	80	65° (Äther)	1650	301 (4.30) 262 (3.54) 213 (3.90)	C ₁₅ H ₁₉ Cl ₂ NO (300.2)	Ber. Gef.	60.01 60.15	6.38 6.54
-[2-(3.4-dimethyl-benzoyl)- vinyl]-amin (6 m)	64	78° (Benzol)	1642	336 (4.36) 264 (3.86) 213 (3.97)	C ₁₅ H ₁₉ Cl ₂ NO (300.2)	Ber. Gef.	60.01 60,20	6.38 6.32
-[2-(3.4-dichlor-benzoyl)- vinyl]-amin (6n)	75	68.5° Nadeln (Äther)	1640	346 (4.32) 253 (4.05) 217 (4.14)	C ₁₃ H ₁₃ Cl ₄ NO (341.1)	Ber. Gef.	45.89 46.00	3.85 3.84
-[2-(3.4-dimethoxy-benzoy])- vinyl]-amin (60)	- 72	94° Nadeln (Benzol)	1645	343 (4.45) 280 (3.74) 235 (4.06)	C ₁₅ H ₁₉ Cl ₂ NO ₃ (332.2)	Ber. Gef.	54.23 54.26	5.77 5.55
-[2-(2.4.5-trimethyl- benzovi)-vinvil-amin (6n)	74	108° (Benzol/Äther)	1630	300 (4.25) 215 (3.90)	$C_{16}H_{21}Cl_2NO$	Ber. Gef	61.15	6.74
-[2-(2.4.6-trimethyl- benzoyl)-vinyl]-amin (6 q)	85	(Benzol)	b)	297 (4.45) 215 (3.90) 207 (3.93)	$C_{16}H_{21}Cl_2NO$ (314.3)	Ber. Gef.	61.15 60.90	6.74 6.77
-[2-(2.3.5.6-tetramethyl- benzoyl)-vinyl]-amin (6 r)	58	110° (Äther)	b)	297 (4.43) 215 (3.97) 208 (4.00)	C ₁₇ H ₂₃ Cl ₂ NO (328.3)	Ber. Gef.	62.20 61.94	7.06 6.89
-[2-(thenoyl-(2))- vinyl]-amin (6s)	69	51° Nadeln (Äther)	1639	347 (4.32) 289 (3.65) 263 (3.74) 214 (3.40)	C ₁₁ H ₁₃ Cl ₂ NOS (278.2)	Ber. Gef.	47.49 47.65	4.71 4.89
-[2-(naphthoyl-(1))- vinyll-amin (6 t)	79	99.5° (Benzol)	1641	304 (4.25)	$C_{17}H_{17}Cl_2NO$	Ber.	63.37	5.32
-[2-(naphthoyl-(2))- vinyl]-amin (6 u)	56	99.5° Nadeln (Benzol)	1642	221 (4.00) 340 (4.36) 293 (3.48) 283 (4.00) 251 (4.38) 245 (4.32)	$C_{17}H_{17}Cl_2NO$ (322.2)	Ber. Gef,	63.37 63.14	5.32 5.14
-[2-(fluoren-carboyl-(2))- vinyl]-amin (6 v)	51	153° Nadeln (Benzol)	1633	349 (4.48) 317 (4.25) 210 (4.01)	C ₂₀ H ₁₉ Cl ₂ NO (360,3)	Ber. Gef.	66.67 66.85	5.32 5.42

Bis-[2-chlor-äthyl]-[2-acyl-vinyl]-amine 6

a) In Äthanol.
b) Keine sichere Zuordnung möglich.

Bis-[2-chlor-äthyl]-[2-(4-brom-benzoyl)-vinyl]-amin-hydroperchlorat 11a: Zu 0.2 g 6e in 1 ccm Aceton gibt man einige Tropfen 70proz. Perchlorsäure und bringt durch Ätherzugabe unter Reiben 11a zur Abscheidung. Gelbe Kristalle (aus Aceton/Äther); Schmp. 111.5-112°. UV (in CHCl₃): λ_{max} (log ε) = 349 (4.21), 277 (4.01) mµ.

> $C_{13}H_{15}BrCl_2NO]ClO_4$ (451.6) Ber. C 34.58 H 3.35 N 3.10 Gef. C 34.75 H 3.18 N 2.98

Spektrophotometrische Verfolgung der Hydrolyse von 6: $8.0 \cdot 10^{-5}$ molare äthanolische Lösungen von 6 werden mit gleichen Volumina Walpole-Puffer (1 *m* CH₃CO₂Na, 1 *m* HCl) vom pH 4.0 versetzt, wobei sich ein pH-Wert von 4.9 einstellt. Die Extinktion der bei 20° gehaltenen Proben wird in Abständen von 2 Stdn. bei den in den Abbildd. 1 und 2 angegebenen Wellenlängen gemessen.

[95/69]